Problem set 6, 08.01.2016

Problem 1: Transformation of velocities

Consider two coordinate systems S and S'. S' is moving with velocity β along the x-axis (c = 1). A particle is now moving within the system S with velocity \mathbf{u} , where the vector of this velocity has an angle θ with the x-axis.

a) Show that the velocities transform in the following way:

$$u'\cos\theta' = \frac{u\cos\theta - \beta}{1 - \beta u\cos\theta} \qquad u'\sin\theta' = \frac{u\sin\theta}{\gamma(1 - \beta u\cos\theta)}$$

- b) Photons move at the speed of light, u = 1. Show that in that case we have also u' = 1. Calculate for this case the transformation of the angle θ .
- c) Neutral π -mesons decay into 2 γ rays. Since mesons have no spin, the γ rays are emmited isotropically in the rest frame (S') of the mesons. Show that the angular distribution in the laboratory frame of the γ -rays arising from mesons of velocity $v = \beta c$ is:

$$P(\theta)d\theta = \frac{\sin\theta d\theta}{2\gamma^2(1-\beta\cos\theta)^2}$$

Follow the steps:

- c1) Consider (S) the lab. frame, and (S') the meson's rest frame. Because of isotropical emmission in the rest frame $P(\theta', \phi') = \frac{1}{4\pi}$. Calculate $P(\theta')d\theta'$, by integrating $P(\theta', \phi')$ over $\phi' = 0 \rightarrow 2\pi$.
- c2) The probability is a conserved quantity, i.e. is Lorentz invariant: $P(\theta')d\theta' = P(\theta)d\theta$. Using the transformation of the angle obtained in (a), calculate $d\theta'/d\theta$ and, hence, determine $P(\theta)$.
- d) Plot $P(\theta)$ as function of θ . Find the angle, for which the distribution has its maximum as a function of β .

Observe that with increasing velocity, β , the maximum is shifting towards smaller angles. Also, larger the β , the maximum peak is higher. This phenomena is called **beaming**. We can understand that the radiation emmitted by a particle at relativistic speeds is not isotropic as compared to when the particle is in the rest frame (where the emmission of radiation is isotropic).

Problem 2: General Lorentz transformation

Determine the Lorentz transformation between two rest frames S and S' that move with respect to each other with velocity \mathbf{v} . Note that the velocity \mathbf{v} is not parallel to a coordinate axis. For this purpose, split the vector \mathbf{r} into two components, parallel \mathbf{r}_{\parallel} and perpendicular \mathbf{r}_{\perp} to the velocity. The parallel component is Lorentz transformed, the perpendicular component is unchanged. Write the solution in vector notation $\mathbf{r} = \ldots$ and $t = \ldots$.

Problem 3:Special relativity

A rod of length L_0 (frame S') is parallel to the surface of a photographic plate and moves, with velocity v, in a direction along its length. A light flash of negligible duration, illuminates the plate (frame S) at normal incidence while the rod is in front of it.

- a) Since the length is determined by measuring both ends simultaneously, find the dimension of the shadow in the frame of the plate (S).
- b) According to an observer in the frame (S'), which moves with the rod find the dimension of shadow.
- c) How does the observer in (S') reconcile the observed dimension of the shadow with the known length of the rod?