Problem set 7, 22.01.2016

Problem 1: Lorentz transformation of fields I

An infinitely long cylinder with cross section area S carries a homogenous current density \mathbf{j} and a homogenous charge density ρ .

- a) Choose a reference frame S' with velocity \mathbf{v} , such that the current density in this frame vanishes ($\mathbf{j}' = 0$). Under what conditions is this possible? Determine the charge density ρ' , the electric field $\mathbf{E}'(\mathbf{r}')$ (Hint: Gauss theorem) and the scalar potential $\phi'(\mathbf{r}')$ in this frame S' (only outside of the cylinder).
- b) Using an inverse Lorentz transformation (which is defined by inverting the velocity, $\mathbf{v} \rightarrow -\mathbf{v}$), calculate the potentials ϕ and \mathbf{A} from ϕ' . Calculate also the fields \mathbf{E} and \mathbf{B} .
- c) Calculate the fields **E** and **B** also directly from their transformation laws (see lecture notes).

Problem 2: Lorentz transformation of fields II

A charged particle with charge q is moving at constant speed $\mathbf{v} = v \mathbf{e}_x$ in the laboratory frame S. At time t = 0 the particle is at the origin $\mathbf{r} = \mathbf{0}$.

- a) Using Coulomb's law, calculate the scalar potential $\phi'(t', \mathbf{r}')$ in the rest frame S' of the particle.
- b) Calculate the potentials $\mathbf{A}(t, \mathbf{r})$ and $\phi(t, \mathbf{r})$ in frame S using the Lorentz transformations. Be sure to write the potentials in the unprimed coordinates (t, \mathbf{r})).
- c) Show that these potentials fulfill the Lorenz gauge.
- d) Show furthermore that the potentials can be written in covariant formulations:

$$A_{\nu} = \frac{q}{c} u_{\nu} / D,$$
 $D = \sqrt{c^{-2} (x^{\mu} u_{\mu})^2 - x^{\mu} x_{\mu}}.$

Here, u_{μ} is the vector of velocity of the particle, and x_{μ} the space-time coordinate.

Problem 3: Lorentz invariance

Based on the energy-momentum tensor, find for which value of a, $E^2 + aB^2$ is Lorentz scalar.