Taking into account noise which is always present in expermental data, we have to rewrite (8) as

(9) |

In order to infer , we apply Bayesian probability theory for the calculation of the posterior probability of a density distribution given the absorbance data . Using Bayes' Theorem we obtain:

(10) |

Assuming uncorrelated Gaussian noise with mean zero and variance the likelihood is given by:

As prior we choose the MaxEnt prior (see e.g. [Siv96] for further discussion):

with hyperparameter , default model and entropy defined by:

(13) |

The default model is the MaxEnt-solution in case of strong regularization .

In order to obtain the maximum posterior or MAP solution for fixed hyperparameter , we have to maximize

Finally we have to specify the optimal hyperparameter , which is fixed by the relation:

(14) |

since we expect each data point to deviate by from its true value on average. Starting with large (in order to ensure convergence of the Newton iterations), the hyperparameter is determined by interval bisection.

Danilo Neuber 2003-10-03