Slides for the Lecture:
 Numerical Methods in Physics, WS 2013/2014
- 
 First lecture (1.10.2013): General introduction to the course (pdf).
 - 
	 Second lecture (8.10.2013): Basic Concepts in Numerical Methods (script, chapter 1) (pdf).
 - 
         Third lecture (15.10.2013): Non-homogeneous linear set of equations: direct methods, LU decomposition.
(script, chapter 2) (pdf).
 - 
         Fourth lecture (22.10.2013): Non-homogeneous linear set of equations: indirect methods, Gauss-Seidel.
(script, chapter 2) (pdf).
 - 
         Fifth lecture (29.10.2013): Least-Squares Approximation: introduction and statistical concepts.
(script, chapter 4) (pdf).
 - 
         Sixth lecture (5.11.2013): LSQ Approximation with linear model parameters: implementation and
	practical applications. (script, chapter 4) (pdf).
 - 
 Seventh lecture (12.11.2013): (C. Heil) LSQ Approximation with non-linear model parameters: Gauss-Newton Method and Marquardt's variant. 
         (script, chapter 4) (pdf).
 - 
 Eighth lecture (19.11.2013): Zeroes of transcendental equations: iterative search and Newton-Raphson method. 
 (script, chapter 5) (pdf).
 - 
 Nineth lecture (26.11.2013): Zeroes of transcendental equations: Newton-Raphson method with gross search,
regula falsi (method of false position), Bisection method. (script, chapter 5) (pdf).
 - 
 Tenth lecture (3.12.2013): Ordinary differential Equations, Initial Value Problems. Runge-Kutta methods.
	(script, chapter 8) (pdf).
 - 
 Eleventh lecture (10.12.2013): Ordinary differential Equations, Initial Value Problems. Runge-Kutta methods, practical applications.
        (script, chapter 8) (pdf).
 - 
 Twelvth lecture (17.12.2013): Eigenvalues and Eigenvectors of Real matrices. Von Mises Method. (script, chapter 7).
(pdf).
 - 
 Thirteenth lecture (7.1.2013) (C. Heil): Eigenvalues and Eigenvectors of Real matrices. Jacobi Method. (script, chapter 7).
(pdf).
 - 
 Fourteenth lecture (14.1.2013) : Eigenvalues and Eigenvectors of Real matrices: examples and Hyman´s method. (script, chapter 7).
(pdf).